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Abstract

Conceptual deslgns of Space Transportation
Vehicles (STV), and their orbltal servlclng facill-

ties, that utilize supercritical, single-phase,

cryogenic propellants have been establlshed and com-
pared with conventional subcrltlcal, two-phase, STV
concepts. The analytlca] study was motivated by
the desire to avold fluid management problems asso-

ciated wlth the storage, acqulsltlon and transfer
of subcrltical llquld oxygen and hydrogen propel-

lants In the Iow-gravlty environment of space.
Although feasible, the supercritlcal concepts suffer
from STV weight penalties and propellant resupply
system power requlrements which make the concepts

impractical.

Nomenclature

g acceleration due to gravity, 32.2 ft/sec 2

H total enthalpy, Btu

h specific enthalpy, Btu/Ib

I speclflc impulse, sec

M total mass, lb

n summation integer

P gage pressure, pslg

V internal volume, In. 3

Am incremental mass, Ib

AV velocity increment, ft/sec

p denslty, lb/ft 3

Subscripts:

b burst

r receiver tank

s supply tank

1 initial

2 intermediate or final

Background

Fluids are generally thought to exist only in
the three common thermodynamic states of solid,

liquid and vapor (e.g., ice, water and steam).
However, under certain conditions, particularly ele-

vated pressure or temperature, the physical distlnc-
tion between the liquid and vapor phases disappears
and the resultlng single phase fluid is identified

as being In a supercritical state.

The supercritIcal fluld phenomena will be bet-
ter understood by referrlng to Fig. I, which shows a

pressure versus specific volume plot for a typical
fluid. Imagine a c]osed container, of fixed volume,
partla]ly filled with Ilquid and the remaining space
being occupied by vapor (point A). Because the con-
tainer vo]ume and Fluid mass, lIquld 01us vapor, are
constant, the system specific vo]ume Is also a con-
stant. Thls two phase thermodynamic state Is called

the subcritica] region. If heat Is added to the
contalner, the system temperature and pressure will
increase with the Fluid system process Followlng a
line of constant specific volume. As the tempera-

ture of the ]iquld increases, it expands and its
density Is reduced. In contrast to the liquid, the
vapor Is highly compressible and thus its density
Increases as the pressure rises. Eventually, the

density of the liquid and vapor become identical and
the distinction between the two phases disappears

(point B). The critical point (C) is the Intersec-
tlon of the lines of constant (critical) temperature

and constant (crltlcal) pressure above which only

slng]e phase fluid can exist. The region of Fluid
thermodynamic states above either the critical pres-
sure or critical temperature Is referred to as the

supercrltical region.
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Figure 1. - Typical fluid property characteristics.

For space appllcatlons, supercritical cryogenlc

fluid storage and supply systems have the advantages
associated with the containment of a slngle phase,

relatively hlgh density, fluid (compared wlth high
pressure gas storage) which mlnlmizes tank volume.
More importantly, the existence of a _ingle-phase
fluid avoids the low-gravity subcritical system

problems associated with separating the two phases
so that preferential liquid withdrawal or vapor

venting can be accompllshed.

The obvious disadvantage of supercritlcal sys-
tems is the high pressure levels required which

translates directly into greater system weight.
Supercrltical conditions exist for hydrogen at pres-
sures above 187.5 psla: for oxygen this pressure is



731.4psia. In order to insure that the cryogen
storage systems do not become subcritIcal, super-
critical hydrogen storage tanks typically operate
at pressures of at least 200 psla and oxygen storage
is typically above 800 psia. Less obvious dlsadvan-

tages of supercritlcal systems are associated with
the need to maintain the required supercriticaI
pressure level, as fluid is withdrawn from the sys-
tem, by adding energy to the tankage, usually in
the form of heat. For some applications, there Is

also a disadvantage resulting from the fact that the
fluid is continually decreasing in density (mass is
being removed from a constant volume system) and
Increasing In enthalpy (due to the heat addition
required to maintain pressure) thus reduclng the

fluids cooling capab111ty.

Introduction

Supercritical cryogenic fluid storage systems

were first employed for space a_plications, during
the Gemini and Apollo programs." Subsequently,
similar systems were developed for use on the Space
Shuttle as a means to provlde oxygen vapor to the
life support system and both hydrogen and oxygen
vapor to be utilized as fuel cell reactants for the
generation of electrical power. Currently, the use

of supercritical nitrogen storage systems has been
baselined for Space Station Freedom to provide
make-up gas for the environmental control system,

The in-space use of supercritica] cryogen stor-
age and supply systems has thus far been restricted
to applicatlons which use the fluid in the vapor

state at approximately room temperature. Conse-
quently, the changing density and enthalpy of the
fluid as it leaves the storage tank are Irrelevant
because the pressure Is reduced and the fluid is
heated to the desired vapor state external to the

storage tank. In addition, the heat input required
to maintaln the storage tank pressure reduces the
external heat Input requirements so that only the
weight associated with the high pressure supercritl-
cal storage system Is a true penalty when compared

with a subcritlcal system that would perform the
same function.

Many future space missions will require the
on-orblt resupply of high-density cryogenic fluids
to not only mlnimlze spacecraft volume, but to also

provide cooling capability. Examples of spacecraft
designed to enable these future missions are the
family of Space Transfer Vehicle (STY) concepts

that are being developed by NASA and the aerospace
Industry. These propulsive vehicles utilize the

cryogenic propellants as coolants for the engines
prior to thelr being combusted in the thrust
chambers.

The objective of the analytical effort
described herein was to assess the feasibility of
employlng a supercritical cryogen storage and trans-
fer system, as well as a STV utilizing supercriti-
cal cryogen tankage, to meet future NASA space

transportation system needs. Two subcritical STV
concepts developed by the Boeing Aerospace Co. 2

were used for comparison with the supercritical sys-
tem concepts. One Boeing STV concept had a dry

weight of 7500 lb, a LOX/LH 2 propellant loading of
46 800 Ib and was designed to transport a 14 600 Ib
spacecraft from low-earth-orbit (LEO) to geosynchro-
nous orbit (GEO); only the vehicle returns to LEO,
utillzlng aerobraklng to mlnlmlze return propellant

requirements. The second Boeing STY concept provided

a LEO to GEO to LEO round-trip payload capability
of 12 OOO Ib, utilizing 70 200 lb of LOX/LH 2 propel-
lants and aerobraking.

Supercritica] transfer system concepts analyzed
involved the option of cooling the STV propellants,

either in the STV tankage or the transfer line, to
increase the fluid density, and coollng capacity.
Weight estimates for the supercritical STY concepts
wet) established which Included either conventional

hlgn pressure aluminum tankage or advanced tech-

nology tanks fabricated with a thin aluminum ]Iner
overwrapped with graphite flbers.

Analytical Approach

Properties of Transferred Suoercritical Fluids

Thermodynamic analysis, which can be performed
on a unit volume basis and is thus independent of
system size, was first performed to establish the

density and enthalpy of the fluid which is withdrawn
from the supercritlcal hydrogen and oxygen storage
systems as a function of the mass fractlon of the
fluid remaining in the storage tank. The inltlal
conditions In the supercritical supply tanks were
establlshed by assuming that the tanks are loaded
to a 98 percent fill level, prior to launch, with

cryogens saturated at atmospheric pressure. The
supply tanks are then locked up and allowed to self-
pressurize to 250 and 850 psia for the hydrogen and
oxygen tanks, respectively. The hydrogen and oxygen
receiver tanks are assumed to operate at 200 and
800 psla, respectively, so that the whole system Is

always above the critical pressure and a 50 psla
pressure differential Is available to enable the
fluid transfer process to proceed. As fluid is
withdrawn from each supply tank, heat must be added
to malntaln the desired pressure level and the tem-

perature of the remalnlng fluid Increases.

The system analysls was performed by taking
Incremental changes In supply tank temperature, and
then consultlng data handbooks 3,4 to establish the
new density and enthalpy of the fluid remaining In

the supply tank. The step sizes are kept rela-
tively small based on changes in density to Improve
accuracy. The mass of fluid that had to be removed
and the change in energy of the fluid remaining
(both on a supply tank unit volume basis) were cal-
culated as follows:

Am

9- : Pl - P2
S

(1)

_h
S

V - P2(h2 - hl)
S

(2)

The incrementa] energy input to each supply
tank, as a function of the incremental Fluid mass
removed, can then be calculated:

&h s Jhs Vs '°_(h2_- hl)

_-_-',7-- ' _ = °I - P2
S

(3)

The iterative analysis was continued until

90 percent of the fluid mass had been removed from
each supply tank. Summing the Incremental values

of Ahs/Am provides the total energy input, per
unlt mass of fluid transferred, that must be added

to each supply tank. In the case of the hydrogen



storage tank, 146 Btu's/Ib of supercritical fluid
transferred are required and 63 Btu's/Ib of fluid
transferred are required for the supercrltical oxy-
gen storage tank.

The propertles of the supercrltlcal fluid which

iS accumulating In each receiver tank can a]so be
established by a similar iteratlve process. The

energy transferred with each incremental mass of
supercrltlcal fluid is equal to the product of the
Incremental mass and its average enthalpy:

The total energy contained in the transferred
supercrltlcal fluid is equal to the sum of the
Incremental energy additions to each receiver tank:

n

Hr _ ahr

z_,v-T
n=l

The total mass transferred to each receiver
tank Is equal to the sum of the incremental masses:

n=l

The average enthalpy of the fluld accumu-
lated in each receiver tank Is then equal to the

total energy contalned In the transferred supercrlt-
Ical fluid dlvlded by the total mass of fluid
transferred:

__ Hr V s

For each fluid transfer system, the previously

selected receiver tank pressure and the above calcu-
lated average enthalpy can be used to enter the cor-
respondlng fluid property data base to establish the
fluid denslty In each recelver tank. The fluid den-
sities in the respective supply and receiver tanks
can be used to establlsh the ratio of receiver to

supply tank volume required for each supercritlcal
cryogen transfer system:

V
r Ps

V -
s Pr

For the supercritical hydrogen transfer system,
a receiver tank 83 percent larger than the supp]y
tank Is required. The supercrltical oxygen receiver
tank Is 66 percent larger than the supply tank.

An alternate approach involves cooling the

supercritical fluid enterlng each receiver tank to
increase its density and thus reduce the size of
the required receiver tanks. For this portion of
the analysis it was assumed that the supply and
recelver tanks would be of equal volume. Since it
was earller assumed that gO percent of the con-
talned fluid would be removed from each supply
tank, the recelver tank fluid density must be

gO percent of the supply tank fluid density. For

each receiver tank, the known pressure and fluid

density allow determlnation of the resulting Fluid
enthalpy. This flnal receiver tank fluid enthalpy
is then subtracted from the previously determined

average enthalpy of the transferred Fluid, Eq. _7),
to establish the cooling required for each super-
critical fluid transfer system. For the hydrogen

system, 69 Btu's of cooling are required for each
pound of supercritical fluid transferred, while
28 Btu's of cooling per pound of supercritlcal fluid
transferred are required for the oxygen system.

Tankage Weight Estimates
(4)

Speclficatlon of tank pressures and the desired
supercrltical hydrogen and oxygen densities Is all
that Is required to Initlate the structural analysis
of the recelver tanks. Tankage deslgned to accommo-

date STV total propellant loadings ranglng from
40 000 to BO 000 Ib were analyzed, assumlng a 6 to
l ratlo of oxygen to hydrogen propellant mass. Once
the corresponding range of requlred tank volumes had

(5) been established, conventional geometric relation-

ships were employed to determlne the required tank
conflguratlons. The only constraint on the tank
geometry analysis was that tank dlameters not exceed
14 ft in d_ameter so that the resulting STY concepts
could be transported to orbit in the Space Shuttle

cargo bay.

Although a number of criteria, includlng

(6) dynamlc pressure durlng launch and fracture mechanl-
cal fatigue life requirements, can drive tankage
deslgn, only static pressure condltions were consid-
ered to establish the required tank wall thick-
nesses. For the aluminum tanks (AL221g-T87)

weights were determined by calculating minimum mem-
brane thicknesses based on the greater of the hoop

or 1ongltudlnal stresses for the cyIlndrIcal por-
tion, and the greater of the apex or the equator
thicknesses for the dome portlon. Standard equa-
tions for membrane slzing were taken from Ref. 5.

(7) In addition, the larger of the cyllnder and dome
thlcknesses resulting from the ultlmate or yield

material propertles, consldering safety factors of
2.0 and 1.5, respectively, were Included in the

weight calculations. For the graphite epoxy metal
lined tanks, weights were calculated by means of a

"performance factor", a factor which Incorporates
all the basic parameters of a composite fiber/metal
pressure vessel, namely, burst pressure, Internal
volume and total vessel weight. The performance
factors used for this study were obtained from
Ref. 6.

Aluminum tank weights for both conventional

(8) subcritlcal (30 psia) and supercritical cryogen
storage systems were determined using stress analy-
sis. The calculated tank wall thicknesses based on

the ultimate material properties are always greater,
for the selected aluminum material, than the thick-

nesses required by a yield criteria. Consequently,
the ultimate criteria was used to establish tank
wall thickness. In addition, the material thick-

ness required at the apex of a tank dome is always
greater. Although real tanks would probably have

varylng tank wall thicknesses on the domes, a con-
servative approach was employed which assumed a
uniform tank dome wall thickness at the maximum cal-

culated value. There will also be local beef-ups

of the tankage wall at the junction of the dome to
the barrel section to reduce the discontinuity
stresses, and at the penetratlon of the tankage wail

for plumbing and electrlcal/instrumentation wiring.



To account For this, a margin of ;5 percent has been

included In the tankage weight calculations.

The most satisfactory method of establishing

the weights of composite fiber/metal pressure ves-
sels of varlous conflgurations is to incorporate all

their basic parameters by means of a performance

factor (P.F., |n inches):

Pb V

P.F. - _ (9)

This factor has an advantage over other design

rating methods In that complete vessels (bosses,
weld lands, local reinforcements, liners for compos-

ite pressure vessels, etc.) are rated by a single

term, so that a varlety of designs can be compared

directly. The best deslgns are indicated by the

highest performance factors.

From Ref. 6, the pressure vessel performance

factor for a graphite/alumlnum tank Is In the range

of 800 000 to I 000 000 in. For thls study, the

lower value of the performance factor was used to

provide a consistent conservatlve approach. From

thls simple analytical technique, total supercritl-

cal cryogen storage system weights can be calculated

for any tank volume and burst pressure. A factor

of safety of 2.0 _s also used in the composite tank

analysis to convert operating pressure to burst

pressure. The results of the tankage weight esti-

mate analysls are presented in Figs. 2 and 3 for the

hydrogen and oxygen rece!ver tanks, respectively.
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Figure 2. - Hydrogen tankage weight comparison.
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Figure 3. - Oxygen tankage weight comparisor_.

STV Weight Estimates

The difference between subcritlcal and super-

critlcal $TV concept weights is primarily associated

with differences In the required tankage weight.

However, the two Boeing concepts were used to eszab-

fish the functlonal relatlonshlps between nontanKage

component/subsystem weights and vehlcle size. Com-

ponent and subsystems were categorized into three

classes: (I) mlsslon dependent (independent of

vehicle size) such as power, control, _uidance and

navlgatlon subsystems: (2) tankage volume dependent,
such as tank insulation and debris/mlcrometeoroid

protection: and (3) tankage mass dependent, such as

structure and propulsion subsystems.

For all of the varlable weight nontankage com-

ponents, Ilnear functional re]ationshlps between the

component/subsystem weights and tankage weight or
volume were established. Total supercritical STV

weights could then be estimated by summing the indi-

vidual component and subsystem weights. The analy-

sis was performed for the two pairs (LO× and LH 2) of

propellant densities, derived from the thermodynamic

analysls, and total STV propellant Ioadings between
40 000 and I00 000 lb.

STV Payload Placement Capability

The classical rocket equation was used to per-

form the comparative analysis of subcritical and

supercritical STV concepts:

/' _M 1

AV : Igoln_22J
(I O)

For the comparison of any two STV concepts, it

was assumed that the vehicles would perform the

same mission and have identical engine performance

characteristics so that the _V and the propulsion

system specific Impulse (I) were assumed to be con-

stants. Consequently, the vehicle comparisons

required only that the ratlo of M 1 (total Initial

vehicle and payload mass Including propellants) to

M2 (vehicle dry weight ÷ payload) be equal for any

pair of STV concepts under evaluation.

The comparative analysis was performed for two

dlfferent 5TV design approaches. The first approach

Involved dictating equal propellant mass, for the

palr of STV's being compared, so that M2 must be a
constant to maintain the ratio of MI to M 2 con-

stant. 14ith M2 held constant, any change _n STV

dry weight must be counterbalanced by an equal and

opposite change In payload weight. The second

approach involved dictating equal payload placement

capability, for the pair of STV's be!ng compared,

and performing an iterative calculation of the

change in required propellant mass and correspond-

ing vehicle dr}, weight untll equal values of the

ratio of M] to M2 were established.

Tank Heat Addition Requirements

The energy addition required to maintain

constant supply tank pressure was calculated by mul-

tiplying the heating requirements per pound of pro-

pellant transferred, both hydrogen and oxygen, times

the vehicle propellant mass requirements determined

by the analysis discussed previously.

Propellant C_l':_uirements

Total energy removal requlrements for the

supercritical STV concepts that employed propellant



cooling to reduce tankage slze and we!ght were also
established. AS In the previous section, this was
accomplished by multiplying the cooling requirements

per pound of propellant transferred, both oxygen and
hydrogen, times the vehicle propellant mass require-
ments. These supercritlca] oxygen and hydrogen pro-

pellant cooling requirements could be provided by
refrigeration or the use of thermodynamic vent sys-
tem (TVS) subcoolers which utilize the sacrificial
boll-off of the corresponding fluid.

Comparison of the propellant coollng requlre-
ments with the cooling capabllity provided by using
TVS subcoolers, whlch employ the sacrlf|clal vaporl-
zatlon of additional propellant provided by the

storage and supply system, indicated that slightly
more than ]Ib of propellant would need to be dis-
carded for every pound of propellant transferred.

This approach suffers from the fact that heating
the supply tank, to maintain the required supercrit-
Ical pressure level, continually increases the fluid
enthalpy and reduces its cooling capability as the
transfer operation proceeds. The propellant losses
associated wlth the TVS subcooler option for propel-

lant cooling were obviously excessive; consequently,
this approach was dropped from further
consideration.

The possibility of employing refrigerators to
provide the necessary cooling requires that some
assumptions be made regarding the availability of
advanced technology when required. The first
assumption involved projections of attalnable effl-
clency of 1 percent for the hydrogen refrigeratlon
system and 4 percent for the oxygen refrigeration
system. These efficlencles represent an increase,
by a factor of approximately two, in the performance
of refrigeratlon systems currently under development
for space appllcatlons.

Once refrigerator effIciencles had been
selected and the propellant cooling requirements
established, electrical energy requirements could
be determined. Electrical power system requirements

can then be calculated by dlvldlng the necessary
electrical energy by a selected STY propellant Ioad-

Ing Interval. Typically subcritical STY propellant
loadlng tlmes are assumed to be 8 hr or less.
However, the electrlcal power system required to

support a one shift supercritical STY servicing
operatlon would have to have several megawatts of
capability. Consequently, in order to reduce the
electrical power requirements to more reasonable
levels, a I week supercrltical STV propellant resup-
ply scenario was assumed. The resulting electrical
power system requirements are on the order of a few
hundred kilowatts and thus are in the realm of pos-
sibility (Space Statlon Freedom initial operating
capability is 75 kN). in addition, the waste heat
from the refrigerators iS more than adequate to pro-
vide the necessary heat addition to the supply
tanks. On the other hand, the corresponding total
refrigeration capability required Is still approxi-
mately two orders of magnitude greater than any sys-
tem currently under development for space
applications.

Study Results

The results of the supercritica] STV weight
estimation using AL2219 and graphite/epoxy tanks,

along with the data points For the two Boeing con-
cepts, are presented in Figs. 4 and 5, respectively.
Detailed subsystem weight comparisons for the two
Boeing STV conceots and STV's utilizing supercriti-
cal propellant storage are provided in Table I (Ccn-
ventional Aluminum Tankage) and Table 2 (Graphite/

Aluminum Composite Tankage). Flgure 6 provides a
comparison of the total STV weights using graphite/
aluminum tankage for the constant propellant and
constant payload scenarios.

By reference to Figs. 4 and 5 and Tables I
and 2, it quickly becomes obvious that any super-
crltlcal STV concept based on conventional tankage
technology Is impractical. The growth In the all
aluminum tankage weight, to accommodate the super-
critical tank pressures, exceeds the payload weight

of either STY concept by a factor of approximately
two. Thus, even with no payload, the supercritical
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TABLE I. - SUBCRITICAL (BOEING) AND SUPERCRITICAL a STORAGE STV WEIGHT COMPARISON

Weights

Volume of propellant, ft 3
Mass of propellant, Ib

Structures and mechanisms

Body structure
Tankage
Met/Deb protection

Aeroassist device
Structure

Thermal protection
Thermal protection and control
Main propulsion, less engines
Main engines (2-6000 LBF ASE)
Auxiliary propulsion

Guidance and navigation
Communications and data handling
E1ectr-icaI power

Height growth, 15 percent

Small

Boeing
subcritical

2 076
48 800

1 058
859
276

93B
478
496
508
428
407
134
422
544
939

Large
Boeing

subcritical

3 143
70 874

l 107
1 187

384

I 703
964
621
586
428
463
154
521
730

] 273

Dry weight, Ib 7 487 I0 121

aAL2219-T87 tank.

Supercritical

3 405 4 257 5 108 5 960 6 812
40 000 50 000 60 000 70 000 80 000

3 242
15 477

553

10 372
6 017

651
3 984

428
2 902

154
521
730

6 755

51 786

3 689 4 126 4 598 5 068
18 467 21 397 24 554 27 699

663 776 827 899

12 186 13 964 15 879 17 787
7 074 8 110 9 226 lO 388

753 855 957 1 058
4 695 5 392 6 143 6 891

428 428 428 428
3 413 3 913 4 452 4 gBg

t54 154 154 t54
521 521 521 521
730 730 730 730

7 916 9 055 lO 270 11 484

60 689 69 421 78 739 88 046

TABLE 2. - SUBCRITICAL (BOEING) AND SUPERCRITICAL a STORAGE STV WEIGHT COMPARISON

Weights Small
Boeing

subcritical

Large
Boeing

subcritical

Volume of propellant, ft3 2 076 3 143 3 405

Mass of propellant, Ib 48 800 70 874 40 000

Structures and mechanisms

Body structure
Tankage
Met/Deb protection

Aeroassist device

Structure

Thermal protection
Thermal protection and control
Main propulsion, less engines
Main engines (2-6000 LBF ASE)
Auxiliary propulsion

Guidance and navigation
Communications and data handling
Electrical power
Height growth, 15 percent

Dry weight, Ib

1 058
85g
276

938
478
496
508
428
407
134
422
544

939

7 487

aGraphitelaluminum composite tank.

1 107
l 187

384

1 703
964
621
586
428
463
154
521
730

1 273

I0 121

4
5O

1 290 t
2 408 3

553

2 443
1 395

651
877
428
671
154
521
730

1 818
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Figure 6. - STV weight comparison using graphite/aluminum tankage.

STV concepts utilizing conventional tank design

practices would not be capable of maklng a LEO to

GEO roundtrip mission. Consequently, the remainder

of the discussion of the study results is based on

the assumption that large high pressure cryogenlc

tank fabrication technology can be developed,

employing an aluminum liner with graphite Fiber

overwrappings for the supercritical STV concepts.

Comparison of Small STV Concepts

The Boeing subcrltical STV concept, designed to

place a 14 600 lb payload In geosynchronous orbit,

has a dry weight of 7500 ib and requires 46 800 lb

of Ifqufd oxygen _nd hydrogen propellants. A _uper-

critical STY with the same uncooled propellant mass

would have a dry weight of 15 go0 Ib (Fig. 5) reduc-

ing the vehicle payload placement capa0ility Co

6200 lb. C_ling the supercritica] propellants dur-

Ing the transfer process, to increase propellant

density and thus reduce tankage volume and mass,

yields a STY dry weight of 12 000 lb with a

10 ]00 Ib payload placement capability. A 133 kN

electrical power system wouTd be required to provide

the necessary refrigeration capability during a

I week transfer operation.

A supercrltical STV concept, which employs the

propellant coollng technique and has been slzed to

have the same payload placement capability as the

smaller Boeing subcrltical STY concept, would

requlre 60 800 Ib of cryogenic propellants. For a

I week propellant loading scenario, a 169 kN elec-

trical power system would be required. A supercrit-

Ical STV concept without cooling would require

86 100 lb of propellant.

Comparison of Larger STV Concepts

The other Boeing STV concept was designed to

provide payload round trip capability between

low-earth-orbit and geosynchronous orblt. This

vehicle has a dry weight of lO lO0 Ib and requires

70 200 Ib of liquid oxygen and hydrogen propellants

for a 12 000 lb payload. A supercriticai STV with

the same uncooled propellant mass would have a dry

welght of 20 500 Ib, yielding a low payload trans-

port capability of 1600 lb. Coollng the supercriti-

col propellants durlng the transfer process would

reduce the STY dry weight to 14 500 Ib, providing a

payload of 7600 lb. Approximately 200 kW of elec-

trical power would be required to accomplish the

cooled supercrltlcal propellant transfer operation

in I week. Simllarly, g8 lO0 Ib of cooled cryogenic

propellants and a 271 kW power system would be

required for a supercrltlcal STV with a 12 000 Ib

payload transport capablllty. An uncooled STY would

requlre 161 500 Ib of propellant.

For the range of vehicle concepts considered

durlng this study, the supply tank heat addition

requlrements varied From 1060 to 2150 kNh. If a

one shift, 8 hr, STV servicing operation is assumed,

then power systems ranging In slze from 132 to

269 kN would be required. A more reasonable

approach would be to utilize waste heat that would

otherwise be dlverted ,to a radiator, and extend the

servicing Interval to several days.

Conclud___ing Remarks

A supercritical oxygen and hydrogen storage and

transfer system could be configured to resupply a

supercritical STV. However, current technology is

totally inadequate to meet the system needs. The

technology for the fabricatlon of large cryogenic

tankage employing aluminum llners overwrapped with

graphite fiber, or concepts with comparable capabil-

ity, would be required, In addition, hlgh capacity

cryogenic refrigeratlon capability for space appli-

cation would need to be developed (nearly two orders

of magnitude greater than any units currently under

development).

No attempt was made to assess the Impact of

ut111zlng supercritlcal systems on the earth-

to-orbit cryogen transport vehicle (tanker).



Obviously, the supercritlcal tanker would ex0erience
tankage weight growth comparable to the STV and thus
would likely also need to employ advanced tecnnology
tankage. However, dependlng on the mode of tanker
transport to orbit (Space Shuttle, Shuttle C, ALS)
the tanker may be a volume constrained payload, due
to the low density of the hydrogen cryogen, and thus
the welght penalties may not be too significant.

If an on-orbit Depot is used to accumulate 1.

supercritlca] propellants for periodic servicing of
STV's, its tankage would also be significantly heav-
Ier than current subcrltIcal orbital cryogen storage
and supply concepts. Since the Depot will likely
be transported to orbit empty, to optimlze thermal 2.
performance, and must be launched only once, the

weight penalties may not be important. The Depot
concept does introduce the need to perform two
in-space fluid transfer operations (tanker to Depot
and Depot to STV) and the concurrent power require- 3.
ments for operation of the refrigeration system.

However, the same power system and refrigerators
could be employed to effect each transfer operation
so that no additional hardware would be required.

Much of the Justification for STV's, other than 4.
reusability, Is based on their lighter weight and
subsequently smaller propellant requirements, for a
given mission and payload, when compared wlth ground
based propulsion vehicle concepts, The supercrlti-
cal STV concepts are inherently heavier and conse-
quently have less payload placement capability for
the same propellant loadlng. Even the assumption of 6,
the availability of advanced materials and refriger-
ation technology, large power generation capability

and the acceptance of a 1 week STV servicing inter-
val is not enough to make the supercritical concept
a reasonable alternative to the development of the

subcritical cryogenic fluid management technology
required to enable current STV concepts to be devel-
oped and achieve operational success.
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